Protease-Activated Receptor-1 Contributes to Cardiac Remodeling and Hypertrophy
نویسندگان
چکیده
Background—Protease-activated receptor-1 (PAR-1) is the high-affinity receptor for the coagulation protease thrombin. It is expressed by a variety of cell types in the heart, including cardiomyocytes and cardiac fibroblasts. We have shown that tissue factor (TF) and thrombin contribute to infarct size after cardiac ischemia-reperfusion (I/R) injury. Moreover, in vitro studies have shown that PAR-1 signaling induces hypertrophy of cardiomyocytes and proliferation of cardiac fibroblasts. The purpose of the present study was to investigate the role of PAR-1 in infarction, cardiac remodeling, and hypertrophy after I/R injury. In addition, we analyzed the effect of overexpression of PAR-1 on cardiomyocytes. Methods and Results—We found that PAR-1 deficiency reduced dilation of the left ventricle and reduced impairment of left ventricular function 2 weeks after I/R injury. Activation of ERK1/2 was increased in injured PAR-1 / mice compared with wild-type mice; however, PAR-1 deficiency did not affect infarct size. Cardiomyocyte-specific overexpression of PAR-1 in mice induced eccentric hypertrophy (increased left ventricular dimension and normal left ventricular wall thickness) and dilated cardiomyopathy. Deletion of the TF gene in cardiomyocytes reduced the eccentric hypertrophy in mice overexpressing PAR-1. Conclusions—Our results demonstrate that PAR-1 contributes to cardiac remodeling and hypertrophy. Moreover, overexpression of PAR-1 on cardiomyocytes induced eccentric hypertrophy. Inhibition of PAR-1 after myocardial infarction may represent a novel therapy to reduce hypertrophy and heart failure in humans. (Circulation. 2007;116: 000-000.)
منابع مشابه
Letter by Strande regarding article "Protease-activated receptor-1 contributes to cardiac remodeling and hypertrophy".
BACKGROUND Protease-activated receptor-1 (PAR-1) is the high-affinity receptor for the coagulation protease thrombin. It is expressed by a variety of cell types in the heart, including cardiomyocytes and cardiac fibroblasts. We have shown that tissue factor (TF) and thrombin contribute to infarct size after cardiac ischemia-reperfusion (I/R) injury. Moreover, in vitro studies have shown that PA...
متن کاملProtease Activated Receptor-2 Contributes to Heart Failure
Heart failure is a major clinical problem worldwide. Previous studies have demonstrated an important role for G protein-coupled receptors, including protease-activated receptors (PARs), in the pathology of heart hypertrophy and failure. Activation of PAR-2 on cardiomyocytes has been shown to induce hypertrophic growth in vitro. PAR-2 also contributes to myocardial infarction and heart remodelin...
متن کاملApoptosis signal-regulating kinase 1 plays a pivotal role in angiotensin II-induced cardiac hypertrophy and remodeling.
Multiple lines of evidence establish that angiotensin II (Ang II) induces not only hypertension but also directly contributes to cardiac diseases. Apoptosis signal-regulating kinase 1 (ASK1), one of mitogen-activated protein kinase kinase kinases, plays a key role in stress-induced cellular responses. However, nothing is known about the role of ASK1 in cardiac hypertrophy and remodeling in vivo...
متن کاملNovel Protective Role for Ubiquitin-Specific Protease 18 in Pathological Cardiac Remodeling.
Ubiquitin-specific protease 18 (USP18), a USP family member, is involved in antiviral activity and cancer inhibition. Although USP18 is expressed in heart, the role of USP18 in the heart and in cardiac diseases remains unknown. Here, we show that USP18 expression is elevated in both human dilated hearts and hypertrophic murine models. Cardiomyocyte-specific overexpression of USP18 in mice signi...
متن کاملKallikrein-related peptidase 8 is expressed in myocardium and induces cardiac hypertrophy
The tissue kallikrein-related peptidase family (KLK) is a group of trypsin- and chymotrypsin-like serine proteases that share a similar homology to parent tissue kallikrein (KLK1). KLK1 is identified in heart and has anti-hypertrophic effects. However, whether other KLK family members play a role in regulating cardiac function remains unknown. In the present study, we demonstrated for the first...
متن کامل